New technique tests heart drugs on beating heart tissue samples

21 July 2014

A researcher at Coventry University has developed a new way to test the effect of drugs on the heart by using samples of live heart tissue stimulated to beat using electrical impulses.

Dr Helen Maddock, from Coventry University’s Centre for Applied Biological and Exercise Sciences, has developed a technique that uses a specimen of human heart tissue attached to a rig that allows the muscle to be lengthened and shortened by an electrical impulse. This mimics the biomechanical performance of cardiac muscle and provides a mean to test drugs before going to full human trials.

Adverse effects of drugs on the cardiovascular system are a major cause of many medical treatments failing, but heart-related side-effects can often only be detected once a drug is being used on patients in clinical trials, by which time it is too late.

In the new technique trial drugs can then be added to the tissue to determine whether or not they have an adverse effect on the force of contraction of the muscle (and therefore of the heart).

This simulated cardiovascular system — known as a work-loop assay — provides the most realistic model of heart muscle dynamics in the world to date, and opens up unprecedented possibilities for identifying negative effects of drugs early and inexpensively.

Dr Maddock has also formed a spin-out company, InoCardia Ltd, from Coventry University to begin implementing her groundbreaking technique in the pharma industry. The company has already received a quarter of a million pound investment from Warwickshire-based technology investment firm Mercia Fund Management.

Dr Helen MaddockDr Maddock, who spent almost ten years developing the technique, said: “I’m delighted that our research is at a stage where we can confidently say the work-loop assay we’ve created is the world’s only clinically relevant in vitro human model of cardiac contractility. It has the potential to shave years off the development of successful drugs for a range of treatments.

“Both the pharma industry and regulators recognise that existing methods of assessing the contractility of the heart are fraught with problems, so we’re incredibly excited to be able to introduce a new way to accurately determine the safety of drugs in respect of the heart without the need to test on humans or animals.”

Mark Payton, managing director of Mercia Fund Management, added: “InoCardia benefits from a proprietary approach following many years of investigation by Helen and her team, and offers the potential for early screening of compounds in development without the initial need for extensive animal trials. Through a markedly accelerated drug development process, this will decrease timelines to drug development, and as a consequence greatly reduce the cost of new drug development. The end beneficiary will, of course, be patients receiving novel treatments sooner.”

Dr Maddock and InoCardia Ltd are already in discussions with a multinational biopharmaceutical company with a view to applying the assay in industry.


To top